COMPLETED AI/ML

MemoryForge

Hierarchical context memory system for multi-agent LLM collaboration with 3-layer architecture

// DESCRIPTION

MemoryForge provides a sophisticated memory management system for multi-agent AI applications. It enables agents to share knowledge, maintain context, and collaborate effectively.

3-Layer Memory Architecture

┌─────────────────────────────────────────────────────────────┐
│                    Agent Interface                           │
├─────────────────────────────────────────────────────────────┤
│  ┌─────────────────────────────────────────────────────┐   │
│  │ Layer 3: Episodic Memory (Short-term, Session)      │   │
│  │          SQLite - Fast access, temporary storage     │   │
│  └─────────────────────────────────────────────────────┘   │
│  ┌─────────────────────────────────────────────────────┐   │
│  │ Layer 2: Semantic Memory (Vector Embeddings)        │   │
│  │          Qdrant - Similarity search, dense vectors   │   │
│  └─────────────────────────────────────────────────────┘   │
│  ┌─────────────────────────────────────────────────────┐   │
│  │ Layer 1: Knowledge Graph (Persistent Relations)     │   │
│  │          Neo4j - Entity relationships, reasoning     │   │
│  └─────────────────────────────────────────────────────┘   │
└─────────────────────────────────────────────────────────────┘

Key Features

  • Multi-Agent Support: Isolated and shared memory spaces
  • REST API: Full CRUD operations for all memory types
  • WebSocket: Real-time memory updates
  • CLI Tools: Management and debugging utilities
  • Backup/Restore: Data persistence and recovery
  • Memory Compression: Automatic summarization of old memories

API Examples

# Store episodic memory
POST /api/v1/memory/episodic
{"agent_id": "agent-1", "content": "User prefers dark mode"}

# Query semantic memory
POST /api/v1/memory/semantic/search
{"query": "user preferences", "top_k": 5}

# Graph query
POST /api/v1/memory/knowledge/query
{"cypher": "MATCH (u:User)-[:PREFERS]->(p) RETURN p"}

// HIGHLIGHTS

  • 473 tests passing with comprehensive coverage
  • Production-ready with Docker deployment
  • English and Chinese documentation
  • Used in multiple research projects

TECH_STACK

Python FastAPI Qdrant Neo4j SQLite WebSocket

PROJECT_INFO

started: 2024-09-01
completed: 2024-12-01
status: COMPLETED
type: AI/ML