COMPLETED
Systems
TinyInfer-WASM
High-performance browser-based ML inference engine using Rust and WebAssembly with SIMD optimization
// DESCRIPTION
TinyInfer-WASM is a production-ready machine learning inference engine that runs entirely in the browser. Built with Rust and compiled to WebAssembly, it delivers near-native performance for neural network inference.
Architecture Overview
┌─────────────────────────────────────────────────────────┐ │ Browser Environment │ ├─────────────────────────────────────────────────────────┤ │ React UI ←→ Web Workers ←→ TinyInfer WASM Core │ ├─────────────────────────────────────────────────────────┤ │ Model Loader │ Tensor Engine │ Op Registry │ Memory │ │ (ONNX/JSON) │ (SIMD Accel) │ (17+ Ops) │ Pool │ └─────────────────────────────────────────────────────────┘
Key Features
- 17+ Neural Network Operators: Conv2D, MatMul, Attention, LayerNorm, GELU, etc.
- SIMD Acceleration: 4x speedup using WebAssembly SIMD instructions
- Transformer Support: Full multi-head attention implementation
- INT8 Quantization: Model compression for faster inference
- Web Workers: Non-blocking inference with progress callbacks
- Memory Efficient: Smart tensor pooling and reuse
Performance Metrics
| Metric | Value |
|---|---|
| WASM Binary Size | 113 KB |
| Test Coverage | 94% (49/52 tests) |
| SIMD Speedup | 3.8x average |
| Memory Overhead | <5MB baseline |
Supported Models
- MLP classifiers
- Convolutional networks (ResNet-style)
- Transformer encoders
- Custom architectures via JSON config
// HIGHLIGHTS
- Phase 8 complete with production-ready web demo
- 94% test coverage across all operators
- Zero external dependencies in core engine
- MIT License - fully open source