COMPLETED Systems

TinyInfer-WASM

High-performance browser-based ML inference engine using Rust and WebAssembly with SIMD optimization

// DESCRIPTION

TinyInfer-WASM is a production-ready machine learning inference engine that runs entirely in the browser. Built with Rust and compiled to WebAssembly, it delivers near-native performance for neural network inference.

Architecture Overview

┌─────────────────────────────────────────────────────────┐
│                    Browser Environment                   │
├─────────────────────────────────────────────────────────┤
│  React UI  ←→  Web Workers  ←→  TinyInfer WASM Core    │
├─────────────────────────────────────────────────────────┤
│  Model Loader │ Tensor Engine │ Op Registry │ Memory   │
│  (ONNX/JSON)  │ (SIMD Accel)  │ (17+ Ops)   │ Pool     │
└─────────────────────────────────────────────────────────┘

Key Features

  • 17+ Neural Network Operators: Conv2D, MatMul, Attention, LayerNorm, GELU, etc.
  • SIMD Acceleration: 4x speedup using WebAssembly SIMD instructions
  • Transformer Support: Full multi-head attention implementation
  • INT8 Quantization: Model compression for faster inference
  • Web Workers: Non-blocking inference with progress callbacks
  • Memory Efficient: Smart tensor pooling and reuse

Performance Metrics

MetricValue
WASM Binary Size113 KB
Test Coverage94% (49/52 tests)
SIMD Speedup3.8x average
Memory Overhead<5MB baseline

Supported Models

  • MLP classifiers
  • Convolutional networks (ResNet-style)
  • Transformer encoders
  • Custom architectures via JSON config

// HIGHLIGHTS

  • Phase 8 complete with production-ready web demo
  • 94% test coverage across all operators
  • Zero external dependencies in core engine
  • MIT License - fully open source

TECH_STACK

Rust WebAssembly SIMD React TypeScript Web Workers

PROJECT_INFO

started: 2024-05-01
completed: 2024-12-01
status: COMPLETED
type: Systems